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Computation of viscous flow over a circular disk of aspect ratio 10 (thickness/
diameter) in the Reynolds number (Re) range of 10 to 300 was performed. The
following flow regimes were observed: (I) steady axisymmetric flow when Re < 135,
with the presence of a toroidal vortex behind the disk; (II) regular bifurcation
with loss of azimuthal symmetry but with planar symmetry and a double-threaded
wake, for 135 � Re < 155; (III) three-dimensional flow with periodic shedding of
double-sided hairpin-shaped vortex structures and periodic motion of the separation
region for 155 � Re < 172; (IV) regular shedding of double-sided hairpin-shaped
vortex structures with planar and spatio-temporal symmetry for 172 � Re < 280; (V)
periodic three-dimensional flow with irregular rotation of the separation region when
Re = 280–300. This transition process for the disk differs from that for the sphere as
we observe a loss of the symmetry plane in Regime III due to a twisting motion of the
axial vorticity strands in the wake of the disk. The periodic flow was characterized
by double-sided hairpin structures, unlike the one-sided vortex loops observed for
the sphere. This resulted in the drag coefficient oscillating at twice the frequency
of the axial velocity. In Regime IV, the vortex loops were shed from diametrically
opposite locations and with equal strength, resulting in the lift coefficient oscillating
symmetrically about a zero mean. These results imply the presence of spatio-temporal
symmetry.

1. Introduction
Steady flow over a three-dimensional bluff body, beyond a critical Reynolds number,

bifurcates into a periodic oscillatory flow with vortex shedding. The flow typically
exhibits a dominant disturbance mode, exemplified by the spatial wavenumbers
m = 0, ±1, ±2, . . . . Periodic shedding of hairpin-shaped vortices, with the same
orientation, forming a ladder-like chain of overlapping loops, have been observed
for a sphere (Achenbach 1974; Magarvey & Bishop 1961) and a disk (Marshall &
Stanton 1930). A linear stability analysis (LSA) by Natarajan & Acrivos (1993) for
flow over a sphere and a disk revealed that the onset of unsteadiness was a two-step
process, namely regular and Hopf bifurcations, due to a dominant first helical mode
(m = ±1). The regular bifurcation is identified by a loss of azimuthal symmetry and
a double-threaded wake (Magarvey & Bishop 1961) at a transition Reynolds number
Re1 = 210. A Hopf bifurcation leads to periodic vortex shedding behind a bluff body
at Reynolds number Re2 = 270. The vortex structure in the sphere wake consists of
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single-sided vortex loops, leading the axial velocity in the wake to oscillate at the
same frequency as the axial drag coefficient (CD) and a non-zero mean lift coefficient
(CL). Both the regular and Hopf bifurcations have been shown to be supercritical
(Thompson, Leweke & Provansal 2001), for a sphere by determining coefficients of
the Landau model. With increasing Reynolds number, the vortex shedding location
changes irregularly along the azimuthal direction from cycle to cycle (Sakamoto &
Haniu 1990), leading to a fully three-dimensional flow at Re3 = 420. However, there
is planar symmetry in the range Re1 � Re < Re3.

Numerical investigations (Johnson & Patel 1999; Mittal 1999; Tomboulides &
Orszag 2000), have successfully identified these different regimes for a sphere, but a
similar study for the disk has not been conducted. Secondary vortex structure formed
around the legs of the shed hairpin vortex was reported by Johnson & Patel (1999)
and later verified by Brücker (2001) through a spatio-temporal reconstruction of the
wake. These structures are not shed from the recirculating region but formed due
to the interaction of the shed hairpin structure and the wake/outer flow. The aspect
ratio (χ = thickness/diameter) of the disk could play a significant role in determining
the transition process and vortex structure in the wake. For example, numerical
simulations by Fernandes et al. (2007) found the transition Reynolds numbers to be
a function of the disk aspect ratio, Re1 = 116.5(1 + χ−1) and Re2 = 125.6(1 + χ−1).
Their study did not address effects of the disk aspect ratio on the vortex structure
in the wake and was limited to Re < Re3. Recent results by Fabre, Auguste &
Magnaudet (2007) have indicated that the flow transition for an infinitely thin disk,
in contrast to the sphere, is a three-step process: the regular bifurcation is followed
by two successive bifurcations. The first bifurcation leads to fully three-dimensional
flow with periodic vortex shedding and a loss of the symmetry plane. In the second,
the flow remains periodic and the symmetry plane is recovered. These results indicate
that a detailed study of the transition process for the disk and the associated vortex
structure is required.

In this paper, flow past a circular disk of aspect ratio 10, for a Reynolds number
range of 10 to 300, has been numerically analysed. The different flow regimes,
oscillation frequencies and vortex structures are identified.

2. Numerical formulation
Steady and transient incompressible flow fields around a circular disk of diameter

D and aspect ratio χ = 10 has been computed and visualized. The computational
domain with a circular cross-section of diameter Dc = 12D was situated along the
z-direction, see figure 1, with the centre of the disk located on the z-axis and its
upstream surface in the (x, y)-plane. The domain extended zd = 15D downstream
and zu = 2.5D upstream of the disk. A hexahedral mesh with an O-grid topology
consisting of 59 556 elements and 61 836 nodes was generated using the commercial
grid generation software ICEM-CFD (ANSYS Inc., 2007). A refined mesh, as shown
in figure 1, was used close to the surface of the disk in both axial and radial directions
to accurately capture steep gradients. The numerical solution of the incompressible
Navier–Stokes equations was carried out using the finite-volume-based commercial
code CFX-10.0 (ANSYS Inc., 2005). This numerical program relies on an unstructured
body-fitted grid with collocated pressure and velocity nodes. The numerical algorithm
is based on the SIMPLEC methodology with the Rhie-Chow interpolation scheme
to prevent the decoupling of the pressure and velocity fields, typically observed on
collocated grids. A robust second-order implicit backward Euler scheme was used



Flow over a thin circular disk at low to moderate Reynolds numbers 255

x

y

z

15D

12
D

2.5D

Free stream

In
le

t

O
ut

le
t

Di sk

AB

C D

Figure 1. Computational domain and grid structure near the disk surface.

for transient simulations. The advection terms were evaluated using a high-resolution
scheme with a blending factor (Barth & Jespersen 1989). A fixed time step gave
approximately 100 points in one period of the dominant frequency with CFL < 1.
Uniform velocity and pressure boundary conditions were prescribed at the inlet and
outlet, respectively. Free and no-slip boundary conditions were applied to the free
stream and disk surface, respectively. For unsteady flow, the history of axial velocity
variations was recorded at z = 0.2D (close to the disk) and at z = 5D (in the wake).
At each axial location, the velocity was sampled at four points (A, B, C, D) separated
by 90◦, as shown in figure 1. For proper identification of the vortical regions, the
method proposed by Jeong & Hussain (1995) (the so-called λ2-scheme) was employed.

To determine the effect, if any, of the domain size on the results, a larger domain
(Dc = 24D, zu = 5D, zd = 30D) was also evaluated. A comparison of the drag
coefficient (CD) computed from the large and small domains had a maximum variation
of 2% in the Reynolds number range of 10–100. The grid independence of the
solution was verified using a fine mesh with 242 066 elements and 247 716 nodes
for both steady and transient computations. In figure 2(a), the computed axial drag
coefficient (CD) for both coarse and fine meshes is compared with experimental data
(Ross & Willmarth 1971) for Re = 10–100. The length of the wake computed for
coarse and fine grids is also compared in figure 2(a), but no experimental results for
wake length are currently available for a disk. In figure 2(b), the lift coefficient (CL)
for the disk at Re = 180 is compared for the coarse mesh, fine mesh and the larger
domain. The results from the nominal mesh were deemed grid independent and the
domain size was found to have no influence on the result.

3. Results
The overall transition process for our disk was found to differ from that of

the sphere, as observed by Fabre, Auguste & Magnaudet (2007) for a disk of
infinitesimal thickness. The transition was found to be a three-step process with
a regular bifurcation followed by two successive bifurcations with periodic vortex
shedding. Also, unlike the sphere, the vortex structures in the wake were found to
be double sided, namely two oppositely oriented hairpin structures were shed from
the recirculating region. At higher Reynolds numbers, the periodic vortex shedding
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Figure 2. (a) Comparison of drag coefficient (CD) and length of the wake for Re = 10–100;
(b) Comparison of periodic variation of the lift coefficient (CL) for Re = 180.
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Figure 3. Steady axisymmetric flow with azimuthal vorticity (upper half) and streamlines
(lower half): (a) Re = 10; (b) Re = 100.

persisted, but its location varied irregularly around the circumference. In the following
sections these results are discussed in more detail.

3.1. Steady axisymmetric flow (10 < Re < 135)

In the Reynolds number range of 10–135, the flow was steady, axisymmetric and
separated from the leading edge to form a toroidal vortex behind the disk. The
size of the recirculating region and the vorticity of the toroidal vortex increased
with Reynolds number (see figure 3). At Re1 = 135, the steady axisymmetric flow
underwent a regular bifurcation to steady asymmetric flow, as discussed in the next
section.

3.2. Steady asymmetric flow (135 � Re < 155)

To determine the first critical Reynolds number, transient flow computations were
performed for Reynolds numbers greater than 100. Artificial disturbances were
introduced through the initial conditions to perturb the flow. The amplitude of the
velocity perturbation was varied up to 100% of the free-stream velocity to determine
the effect, if any, on the end results. At Re1 = 135, there was a breakdown of
azimuthal symmetry leading to a steady asymmetric flow field with a double-threaded
wake, i.e. two counter-rotating streamwise (axial) vortices, see figure 4, similar to that
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Figure 4. Steady non-axisymmetric flow (Re = 140) with a symmetry plane (−−). (a) Axial
vorticity and limiting streamlines (shown with arrows). (b) Axial vorticity isosurfaces, equal
magnitudes of positive and negative vorticity indicated by dark and light surfaces, respectively.

of a sphere (Johnson & Patel 1999; Tomboulides & Orszag 2000; Thompson, Leweke
& Provansal 2001). The predicted critical Reynolds number is close to Re1 = 128.5,
obtained by Fernandes et al. (2007) but higher than the LSA prediction of Re1 = 116.5
owing to the finite thickness of our disk. A symmetry plane, oriented at ≈ 62◦ to the
x-axis, was observed. The orientation of the symmetry plane in a numerical simulation
is influenced by irregularities in the grid, initial conditions and solver methodology.
The results were transformed such that the symmetry plane aligned with the (x, z)-
plane. The stagnation point on the downstream surface of the disk is displaced from
the centre (see figure 4a) signifying loss of axial symmetry. Figure 4 also indicates the
presence of an axial vorticity dipole outside the recirculating region, which induces
an axial vorticity of opposite sign to originate from the recirculating region, forming
strands of vorticity extending far downstream.

3.3. Three-dimensional periodic flow with regular rotation
of the seperation region (155 � Re < 172)

At Re2 = 155, a Hopf bifurcation was observed with periodic shedding of hairpin-
shaped vortices in the wake of the disk. The symmetry plane observed during the
regular bifurcation was lost and the flow was fully three-dimensional. The strands of
axial vorticity in the wake, observed in the previous regime, were found to coil/kink
around each other. Similar ‘kinking’ of the trailing vortices has been observed for a
sphere (Thompson, Leweke & Provansal 2001). Focusing on Re = 160, figure 5(a)
shows the positive and negative strands of axial vorticity twisting around each other
near the disk surface and also in the near wake (figure 5b). This indicates a loss of the
symmetry plane, compared to that observed in figure 4. The axial drag coefficient (CD)
and the angle of lift force (θ) to the x-axis are shown in figure 6(a). The direction of
the lift force varies periodically at a Strouhal number (St = f D/U ) of 0.113 between
−65◦ and −10◦.

The frequency spectra of the axial velocity (Vz) and CD are shown in figure 6(b),
where the velocity oscillates at St1 = 0.113 but the drag coefficient oscillates at 2St1.
The low-frequency oscillation in CD could be due to the pumping motion of the
recirculating region, namely the m = 0 mode (Berger, Scholz & Schumm 1990). The
increased periodicity of the drag coefficient is in contrast to that observed for a sphere,
where the frequency of oscillation for the axial velocity and the drag coefficient are
identical (Johnson & Patel 1999; Tomboulides & Orszag 2000) and matches the vortex
shedding frequency measured through flow visualization (Sakamoto & Haniu 1990).
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Figure 5. Periodic three-dimensional flow (Re = 160). (a) Axial vorticity, solid and dashed
lines indicate positive and negative values, respectively. (b) Axial vorticity isosurfaces, equal
magnitudes of positive and negative vorticity indicated by dark and light surfaces, respectively.
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Figure 6. Regular vortex shedding (Re = 160). (a) Temporal variation of CD and the
orientation of the lift force. (b) Spectral analysis of axial velocity (Vz) and CD .

Johnson & Patel (1999) do report a smaller peak at twice the fundamental frequency
for CD , but its effect was not significant. These results indicate that unlike the vortex
shedding behind a sphere, where one-sided vortex loops are shed, we observe shedding
of double-sided hairpin vortices which are shed from the re-circulating region, unlike
those observed by Johnson & Patel (1999) due to the interaction of the wake/outer
flow. The predicted Strouhal number (St1 = 0.113) compares well with the value of
0.122 reported by Fernandes et al. (2007). The predicted critical Reynolds number
Re2 = 155 is higher than Re2 = 138.16, determined by Fernandes et al. (2007),
probably owing to differences in solution algorithm and grid structure. The present
result is also higher that that predicted by linear stability analysis (Natarajan &
Acrivos 1993) of Re2 = 125.6 owing to the finite-thickness effects. This behaviour of
a χ = 10 disk, compared to that of an infinitesimal thickness disk (Fabre, Auguste
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Figure 7. Periodic vortex shedding (Re = 180). (a) Temporal variation of CD and CL.
(b) Spectral analysis of CL and CD .

& Magnaudet 2007), indicates that the observed difference in the transition process
is not limited to infinitely thin disks. There is probably a critical thickness above
which the transition process would exactly match that of the sphere. With increasing
Reynolds number, the amplitude of the rotating axial vorticity strands increased and
at Re2 = 172 it was observed that the plane of symmetry was restored along with a
spatio-temporal symmetry.

3.4. Unsteady flow with a plane of symmetry (172 � Re < 280)

At Re2 = 172, planar symmetry was found to emerge with continued periodic shedding
of double-sided hairpin-shaped vortices from diametrically opposite locations. Similar
planar symmetry has been observed for the sphere (Johnson & Patel 1999; Sakamoto
& Haniu 1990; Tomboulides & Orszag 2000). Computational results obtained for
Re = 180 showed that the lift coefficient (CL), determined from the lateral force
acting along the plane of symmetry, made equal magnitude oscillations about a mean
value of zero (see figure 7a). This result contrasts with that of a sphere where the
lift force was one-sided (Johnson & Patel 1999) and is related to the shedding of
symmetric opposite-sided vortex loops. The lift coefficient (CL) varied periodically at
St1 = 0.113 and CD continued to oscillate at 2St1.

The vortex shedding mechanism, visualized using the λ2-scheme, is shown in
figure 8(a, b). The orientation of the vortex loops indicates a double-sided vortex
shedding mode. This is further exemplified in the temporal variation of the azimuthal
vorticity contours projected on the symmetry plane depicted in figure 9(a) and the axial
vorticity contours near the disk surface in figure 9(b). The contours are separated by a
time interval of half the period of velocity fluctuation. The azimuthal vorticity shown
in figure 9(a) clearly shows vortices shed alternately from the top and bottom surface
of the disk. The axial vorticity contours shown in figure 9(b) display a symmetry plane
and, in contrast to the vorticity dipole observed in figure 4(a), a vorticity quadrupole
is observed. The topology of the limiting streamlines on the rear surface of the disk
is shown in figure 9(c). The streamlines form a node on the symmetry plane that
oscillates at a frequency equal to that of the Vz/CL fluctuation; in contrast, the node
behind a sphere is stationary (Johnson & Patel 1999), indicating that the hairpin
vortex strongly interacts with the disk surface. These results indicate the presence
of a spatio-temporal symmetry, similar to that observed by Barkley & Henderson



260 A. R. Shenoy and C. Kleinstreuer

y

y
z

x

z

Plane of symmetry

(a)

(b)

Figure 8. Vortical regions (λ2-scheme) showing regular vortex shedding (Re = 180):
(a) symmetry plane; (b) perpendicular to the symmetry plane.
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Figure 9. Alternate vortex shedding (Re = 180). (a) Aximuthal vorticity regions projected on
the plane of symmetry. (b) Axial vorticity projected on the (x, y)-plane near the disk surface.
(c) Limiting streamlines near the disk surface; solid and dashed lines indicate positive and
negative values, respectively.

(1996) during flow transition over a cylinder. This implies that a spatial rotation, in
the azimuthal direction, by 180◦ would match the flow field at a temporal location
separated by T/2.

3.5. Unsteady flow with loss of plane of symmetry (Re = 300)

At Re3 = 280, irregular motion of the vortex shedding location led to a loss of planar
symmetry. This irregular motion could be a precursor of the helical vortex structures
observed at higher Reynolds numbers (Berger, Scholz & Schumm 1990). A similar
mechanism for the loss of planar symmetry has been observed for a sphere (Mittal
1999). The computational results obtained for the disk at Re = 300 are discussed
next. The vortex shedding is visualized in figure 10.

The velocity spectrum (see figure 11a) has a dominant frequency at St = 0.122
due to vortex shedding and lower frequency oscillations at St = 0.041. The velocity
at z = 0.2D also showed a similar influence of the low-frequency oscillation and a
higher frequency at St ≈ 0.2, possibly related to a shear-layer instability near the
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Figure 11. Irregular vortex shedding (Re = 300). (a) Spectral analysis of the axial velocity.
(b) Temporal evolution of vortex shedding location.

disk. This low-frequency oscillation has been attributed to the irregular motion of the
vortex shedding location (Tomboulides & Orszag 2000) and to the pumping motion
of the recirculating region, namely the m = 0 mode (Berger, Scholz & Schumm 1990).
The azimuthal location of vortex shedding was determined by the orientation of
the lateral force with respect to the x-axis. A time history of the azimuthal vortex
shedding location is shown as a polar plot in figure 11(b), where time is the radius
and the orientation of the force is the polar angle. A continuous rotation of the vortex
shedding location would appear as a spiral emanating from the origin. The irregular
rotation of the vortex shedding location can be observed in figure 11(b), where
it randomly changes direction: it sometimes oscillates near an azimuthal location
(around 30◦ in our case) and then suddenly makes a complete rotation around the
circumference.

4. Conclusions
The transition process for a disk of aspect ratio 10, in the Reynolds number

range of 10–300, was found to be a four-step process: (I) regular bifurcation; (II)
Hopf bifurcation with three-dimensional flow and periodic rotation of the separation
region; (III) periodic flow with planar symmetry and spatio-temporal symmetry; (IV)
periodic three-dimensional flow with irregular rotation of the separation region. The
regular bifurcation showed a double-threaded wake with planar symmetry, similar
to that of the sphere. The second bifurcation to periodic shedding of double-sided
hairpin vortices, resulted in a loss of the symmetry plane. The presence of double-
sided vortices contrasts with the single-sided loops observed for a sphere. This vortex
structure also caused the drag coefficient to oscillate at twice the frequency of the axial
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velocity fluctuation. In the third bifurcation, the symmetry plane was recovered and
the lift coefficient oscillated periodically with a zero mean, namely spatio-temporal
symmetry. This transition process compares to that observed for an infinitely thin disk
(Fabre, Auguste & Magnaudet 2007), indicating a threshold for the disk thickness
beyond which the transition process is like that of a sphere. In the fourth step,
irregular motion of the vortex shedding location was observed leading to the loss of
the symmetry plane.

We plan to study the effect of disk aspect ratio on the transition process and also
consider a moving disk.

We would like to thank the reviewers for their insightful comments. We acknowledge
the use of ICEM-CFD and ANSYS-CFX10 (Ansys Inc., Canonsburg, PA) as part of
the Ansys-CFPD Lab academic partnership.
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